Header Ads Widget

Prove that 3 + 2√5 is irrational.

Q. Prove that 3 + 2√5 is irrational.

Solution: 

Let 3 + 25 be a rational number.

Then the co-primes x and y of the given rational number where (y ≠ 0) is such that:

3 + 25 = x/y

Rearranging, we get,

25 = (x/y) – 3

5 = 1/2[(x/y) – 3]

Since x and y are integers, thus, 1/2[(x/y) – 3] is a rational number.

Therefore, 5 is also a rational number. But this confronts the fact that 5 is irrational.

Thus, our assumption that 3 + 25 is a rational number is wrong.


Hence, 3 + 25 is irrational.

Post a Comment

0 Comments